Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

نویسندگان

  • Zhipu Pei
  • Dongying Ju
چکیده

The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Simulation of Solidification Process in Continuous Casting

In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...

متن کامل

Using Finite Point Method for the Numerical Simulation of Heat Transfer Coupled with Microsegregation during Continuous Casting

In the present work, a meshless method called Finite Point Method (FPM) is developed to simulate the solidification process of a continuously cast steel bloom in both primary and secondary cooling regions. The method is based on the use of a weighted least-square interpolation procedure. A transverse slice of the bloom moving at casting speed is considered as the computational domain and two di...

متن کامل

SOLIDIFICATION MODELING AND DENDRITE STRUCTURE ANALYSIS IN A HORIZONTAL CONTINUOUSLY CAST BRASS BILLET

Abstract: The horizontal continuous casting process has received a significant attention for near net shape casting of non ferrous metals and alloys. Numerical Simulation has been widely used for process design and optimization of continuous casting process. In the present study, a 3-dimensional heat flow model was developed to simulate the heat transfer and solidification in a horizontal b...

متن کامل

Mathematical Modeling of Heat Transfer for Steel Continuous Casting Process

     Heat transfer mechanisms and the solidification process are simulated for a continuous casting machine and the geometric shape of the liquid pool is predicted considering different conditions. A heat transfer and solidification model is described for the continuous casting of steel slabs. The model has been established on the basis of the technical conditions of the slab caster in the con...

متن کامل

شببیه سازی تاثیر سرعت انجماد بر ریز ساختار آلیاژهای ریختگی آلومینیوم با استفاده از مدل شبکه عصبی مصنوعی

In cast aluminum and its alloys, the microstructure varies under different solidification conditions, causing variations in their mechanical properties. These materials are basically produced in sand and metallic molds or through die casting, each of which is associated with a unique solidification regime with significantly different cooling rates so that the resulting microstructure strongly d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017